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Allocations and Sales Everywhere

I Sale of house, car, airline tickets.

I Sale of IPL teams/players.

I Sale of spectrum bandwidth, coal mining rights.

I Allocation of ancestral property.

I Allocation of a public good - park, museum, library.



Allocation Problems

I One or more objects are transferred from the seller to the
buyers.

I Monetary transfers are involved.



Outline and Objectives

I Focus on environment with transfers where agents evaluate
transfers using quasilinear utility functions.

I Mechanism design using single object auctions.

I Focus on structural properties of possible mechanisms.

I Bilateral trading.



Single Object Allocation

I A single object needs to be allocated to a finite set of agents
N.

I Transfers/Payments are allowed.

I Agents utility is quasilinear: value for the object minus
payment (transfer amount)

I Transfers can be potentially positive, negative, or zero.



Private Information

I An agent’s value for the object is his private information.

I Value of agent i is known to agent i completely but not
known to other agents or to the seller/planner.

I The value/type of agent i is denoted by vi .

I If agent i with type vi gets the object with probability αi and
pays pi , then his net utility is

αivi − pi .



Two Decisions

Two decisions:

I Allocation decision: who gets the object with what probability,

I payment decision: transfer amount of each agent.

Allocation and payment decisions depend on the objectives of the
designer.



Information Aggregation

Asks each agent to report his type and based on that makes
allocation and payment decisions.

Since the seller does not know the types, he has to announce his
allocation and payment decisions for all possible reports of types of
the agents.

Restricting attention to such direct mechanisms is without loss of
generality.
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The Domain

I Assumption: The type of each agent i is a non-negative real
number in Vi ≡ [0, βi ]. The seller has zero value for the
object.

I The seller (designer) knows Vi for each i - hence, no report
can be made outside Vi .

I A type profile is a collection of types of all the agents
v ≡ (v1, . . . , vn).

I The set of all type profiles or the domain of the problem is:
V ≡ V1 × . . .× Vn.



The Direct Mechanism

A direct mechanism is a collection of pairs {ai , pi}i∈N , where

I allocation rule. ai : V → [0, 1] is the allocation probability of
agent i satisfying

∑
j∈N aj(v) ≤ 1 for all v ∈ V

I payment rule. pi : V → R is the payment amount of agent i .



Incentives

Can we design the allocation rules and payment rules such that
each agent has the incentive to report his true type to the direct
mechanism?



Dominant Strategy Incentive Compatibility

Definition
A mechanism {ai , pi}i∈N is dominant strategy incentive
compatible (DSIC) if for every agent i ∈ N, for every v−i ∈ V−i ,
and for every vi , v

′
i ∈ Vi , we have

ai (vi , v−i )vi − pi (vi , v−i ) ≥ ai (v
′
i , v−i )vi − pi (v

′
i , v−i ).



First-Price Auction is Not DSIC

I Highest reported type gets the object and pays his type.
Others pay zero.

I Suppose N = {1, 2}. If agent 2 reports 8 and agent 1 has
value 10, he has no incentive to report more than 8.

I Truthtelling is not a dominant strategy.



Vickrey (Second-price) Mechanism

I Highest reported type gets the object with probability one
(ties broken in some way).

I Agents who do not get the object pay zero and the winner of
the object pays the second highest reported value.

Theorem
The Vickrey mechanism is DSIC.
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Closer Look at Net Utility
Fix agent i and his true type vi . Fix others report at v−i .

Let UVick(vi , v−i ) be the net utility of agent i from truthtelling in
the Vickrey auction at (vi , v−i ).

v (2)

Type of agent i

Net utility

Slope=0

Slope=1

Figure: Net utility as a function of type of agent i



Two Observations

I Utility function is non-decreasing and convex.

I Derivative (wherever exists) is equal to the allocation
probability.

All DSIC mechanisms have this property.
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Question

Can we characterize the set of all DSIC mechanisms?



Facts from Convex Analysis - Rockafellar’s book

Let g : I → R, where I ⊆ R is an interval.

Definition
A function g : I → R is convex if for every x , y ∈ I and for every
λ ∈ (0, 1), we have

λg(x) + (1− λ)g(y) ≥ g(λx + (1− λ)y).

I A convex function is continuous in the interior of its domain.

I Further, a convex function is differentiable almost everywhere
in its domain.

I More formally, there is a subset of I ′ ⊆ I such that I ′ is dense
in I , I \ I ′ has measure zero and g is differentiable at every
point in I ′.
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Subgradient

Definition
For any x ∈ I , x∗ is a subgradient of a convex function g : I → R
at x if

g(z) ≥ g(x) + x∗(z − x) ∀ z ∈ I .

If g is differentiable at x ∈ I , denote the derivative of g at x as
g ′(x).

Lemma
Suppose g : I → R is a convex function. Suppose x is in the
interior of I and g is differentiable at x , then g ′(x) is the unique
subgradient of g at x .
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More Facts on Subgradients

Lemma
Suppose g : I → R is a convex function. Then for every x ∈ I , the
subgradient of g at x exists.

The set of subgradients of g at a point z ∈ I is denoted as ∂g(z).



Non-decreasing Subgradient

Lemma
Suppose g : I → R is a convex function. Let φ : I → R such that
φ(z) ∈ ∂g(z) for all z ∈ I . Then, for all x , y ∈ I such that x > y ,
we have φ(x) ≥ φ(y).

By definition,

g(x) ≥ g(y) + φ(y)(x − y)

g(y) ≥ g(x) + φ(x)(y − x).

Adding these two inequalities, we get

(x − y)(φ(x)− φ(y)) ≥ 0.

Since x > y , we get φ(x) ≥ φ(y).



Illustration

x

g(x) Non-differentiable point

Figure: A convex function and its subgradients



Fundamental Theorem of Convex Analysis

Lemma
Let g : I → R be a convex function. Then, for any x , y ∈ I ,

g(x) = g(y) +

∫ x

y
φ(z)dz ,

where φ : I → R is a map satisfying φ(z) ∈ ∂g(z) for all z ∈ I .



Back to DSIC Mechanisms

Definition
A mechanism M ≡ {ai , pi}i∈N is dominant strategy incentive
compatible (DSIC) if for every agent i ∈ N, for every v−i ∈ V−i ,
and for every vi , v

′
i ∈ Vi , we have

ai (vi , v−i )vi − pi (vi , v−i ) ≥ ai (v
′
i , v−i )vi − pi (v

′
i , v−i ).



Rephrasing DSIC

Definition
A mechanism M ≡ {ai , pi}i∈N is dominant strategy incentive
compatible (DSIC) if for every agent i ∈ N, for every v−i ∈ V−i ,
and for every vi , v

′
i ∈ Vi , we have

UM(vi , v−i ) ≥ UM(v ′i , v−i ) + ai (v
′
i , v−i )

[
vi − v ′i

]
.



Monotone Allocation Rules

Definition
An allocation rule ai is non-decreasing if for every v−i ∈ V−i we
have ai (vi , v−i ) ≥ ai (v

′
i , v−i ) for all vi , v

′
i ∈ Vi with v ′i < vi .

Type of agent i

Allocation probability

Figure: Non-decreasing allocation rule



Main Characterization - Myerson

Theorem
A mechanism M ≡ {ai , pi}i∈N is DSIC if and only if

I Monotone. ai is non-decreasing for all i ∈ N

I Revenue Equivalence. for all i ∈ N, for all v−i ∈ V−i , and
for all vi ∈ Vi

UM
i (vi , v−i ) = UM

i (0, v−i ) +

∫ vi

0
ai (xi , v−i )dxi .
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Sketch of Proof

Easy direction:

UM
i (v ′i , v−i )−UM

i (vi , v−i ) =

∫ v ′i

vi

ai (xi , v−i )dxi ≤ (v ′i−vi )ai (v ′i , v−i ).

Difficult direction:

I DSIC M implies UM
i (·, v−i ) is convex for each v−i .

I ai (vi , v−i ) is a subgradient of this convex function at vi . So, it
is non-decreasing.

I Then, fundamental theorem of convex analysis gives revenue
equivalence.
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Main Implications for Design

I A DSIC mechanism must involve a non-decreasing allocation
rule.

I The payment at a type is uniquely determined by the payment
at the lowest type and the allocation rule.



Revenue Equivalence Re-examined

Suppose {ai , pi}i∈N and {ai , p′i}i∈N are two DSIC mechanisms.
Revenue equivalence says for every i ∈ N and for every v−i ,

pi (vi , v−i )− p′i (vi , v−i ) = pi (0, v−i )− p′i (0, v−i ).

for all vi .

A Different DSIC Mechanism:

I Object goes to the highest reported type.

I Winner pays zero, but losers receive a transfer equal to the
winner’s reported type.

I This mechanism is DSIC, allocation rule same as Vickrey
mechanism. Payments must differ by a constant amount from
the Vickrey mechanism.
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The Implementation Perspective

Designer’s objectives are encoded in allocation rules {ai}i∈N .
Payment rules are means to achieve incentives.

Definition
A collection of allocation rules {ai}i∈N are implementable (in
dominant strategies) if there exists payments rules {pi}i∈N such
that {ai , pi}i∈N is a DSIC mechanism.



What Allocation Rules are Implementable?

Theorem
A collection of allocation rules {ai}i∈N is implementable if and
only if each ai is non-decreasing.

I Highest reported type gets the object.

I Highest reported type among those types which are above a
reserve price wins the object - if there are no such types,
object is unsold.

I Ex-ante weights are assigned to agents, and highest weighted
type wins the object.

I Many more . . ..
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Sketch of Proof

I Suppose {ai}i∈N is implementable. Then there is some
{pi}i∈N such that {ai , pi}i∈N which is DSIC. Earlier result
says that each ai is non-decreasing.

I Suppose each ai is non-decreasing. Then, fixing pi (0, v−i ) at
some value for each i and each v−i , and setting pi (vi , v−i ) for
each (vi , v−i ) as before, defines a DSIC mechanism.



Deterministic Mechanisms and Allocation Rules

Type of agent i

Allocation probability

κai (v−i )

1

Figure: A deterministic implementable allocation rule



Cutoff Payments

κai (v−i ) =

{
inf{vi ∈ Vi : ai (vi , v−i ) = 1} if ai (vi , v−i ) = 1 for some vi ∈ Vi

0 otherwise

I The infimum amount one needs to report to start winning the
object.

I Every non-decreasing allocation rule can be implemented by
setting

pi (vi , v−i ) = κai (v−i )

if ai (vi , v−i ) = 1 and

pi (vi , v−i ) = 0

if ai (vi , v−i ) = 0.



Optimal Auction Design

What auction maximizes expected revenue of the seller?



Prior Information

I Each agent i ∈ N draws his value from Vi = [0, βi ] using a
probability distribution with cdf Gi (density gi ). All draws are
independent and G−i is cummulative distribution of all the
agents except agent i .

I Consider a mechanism M ≡ {ai , pi}i∈N . An agent i with type
vi has an interim allocation probability of

αi (vi ) :=

∫
V−i

ai (vi , v−i )dG−i (v−i ).

and an interim payment of

πi (vi ) :=

∫
V−i

pi (vi , v−i )dG−i (v−i ).



Weakening DSIC

Requiring DSIC is too demanding - truthtelling is best irrespective
of what other agents do.

What if truthtelling is only a Bayesian Nash equilibrium - if others
report truthfully, your expected utility is maximized by telling the
truth.

Bayesian incentive compatibility - every agent must maximize
expected utility from truthtelling.



Bayesian Incentive Compatibility (BIC)

Definition
A mechanism M ≡ {ai , pi}i∈N is Bayesian incentive compatible
(BIC) if for every agent i ∈ N and for every vi , v

′
i ∈ Vi , we have

αi (vi )vi − πi (vi ) ≥ αi (v
′
i )vi − πi (v ′i ).

Expected utility from truthtelling UM
i (vi ) := αivi − πi (vi ).

Definition
A mechanism M ≡ {ai , pi}i∈N is Bayesian incentive compatible
(BIC) if for every agent i ∈ N and for every vi , v

′
i ∈ Vi , we have

UM
i (vi ) ≥ UM

i (v ′i ) + αi (v
′
i )(vi − v ′i ).
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Myerson - BIC Version

Definition
An allocation rule ai is called non-decreasing in expectation
(NDE) if αi (vi ) ≥ αi (v

′
i ) for all vi , v

′
i ∈ Vi with v ′i < vi .

Theorem
A mechanism M ≡ {ai , pi}i∈N is BIC if and only if

I Monotone. ai is NDE for all i ∈ N

I Revenue Equivalence. for all i ∈ N and for all vi ∈ Vi

πi (vi ) = πi (0) + viαi (vi )−
∫ vi

0
αi (xi )dxi .

OR

UM
i (vi ) = UM

i (0) +

∫ vi

0
αi (xi )dxi .



Myerson - BIC Version

Definition
An allocation rule ai is called non-decreasing in expectation
(NDE) if αi (vi ) ≥ αi (v

′
i ) for all vi , v

′
i ∈ Vi with v ′i < vi .

Theorem
A mechanism M ≡ {ai , pi}i∈N is BIC if and only if

I Monotone. ai is NDE for all i ∈ N

I Revenue Equivalence. for all i ∈ N and for all vi ∈ Vi

πi (vi ) = πi (0) + viαi (vi )−
∫ vi

0
αi (xi )dxi .

OR

UM
i (vi ) = UM

i (0) +

∫ vi

0
αi (xi )dxi .



Bayesian Implementation

Theorem
A collection of allocation rules {ai}i∈N is implementation in
Bayes-Nash equilibrium if and only if it is NDE.

Type of agent 1

Type of agent 2

1

1

1

1

1

1

1

1

Figure: A BIC allocation rule which is not DSIC
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BIC-DSIC Equivalence

Theorem (Manelli-Vincent, 2007)

Suppose M is a BIC mechanism. Then, there exists a DSIC
mechanism M ′ such that for all i ∈ N and for all vi ∈ Vi ,

UM
i (vi ) = UM′

i (vi ).



Bayesian Revenue Equivalence

Two payment rules implementing the same allocation rule in
Bayes-Nash equilibrium must differ by a constant in expectation.

First-price and second-price auctions use the same allocation rule
with the same expected payment at the lowest type. Hence, they
must generate the same expected payment for every type of agent.
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Individual Rationality

Definition
A mechanism M is interim individually rational (IIR) if for every
i ∈ N and for every vi ∈ Vi , we have

UM
i (vi ) ≥ 0.

Usually applied for BIC mechanisms. Since for BIC mechanisms,
interim expected utilities are non-decreasing, IIR is equivalent to
requiring

UM
i (0) ≥ 0.
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Expected Revenue from a Mechanism

Expected payment of agent i from mechanism M ≡ {ai , pi}i∈N is∫ βi

0
πi (vi )gi (vi )dvi .

Expected revenue from mechanism M ≡ {ai , pi}i∈N is

RM :=
∑
i∈N

∫ βi

0
πi (vi )gi (vi )dvi .
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Optimal Mechanism

A mechanism M ≡ {ai , pi}i∈N is optimal if it is BIC, IIR, and for
any other BIC and IIR mechanism M ′, we have

RM ≥ RM′ .

Very sensitive to distributional assumption.
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Payment of Agent i

∫ βi

0
πi (vi )gi (vi )dvi = πi (0) +

∫ βi

0
αi (vi )vigi (vi )dvi

−
∫ βi

0

∫ vi

0

(
αi (si )dsi

)
gi (si )dsi ,

Changing the order of integration in the last term∫ βi

0

∫ vi

0

(
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)
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0
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vi
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)
αi (vi )dvi
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Rewriting Revenue

RM :=
∑
i∈N

πi (0) +
∑
i∈N

∫ βi

0

(
vi −

1− Gi (vi )

gi (vi )

)
αi (vi )gi (vi )dvi .

We now define the virtual valuation of agent i ∈ N with valuation
vi ∈ Vi as

wi (vi ) = vi −
1− Gi (vi )

gi (vi )
.



Simplifying

RM =
∑
i∈N

πi (0) +
∑
i∈N

∫ βi

0
wi (vi )αi (vi )gi (vi )dvi

=
∑
i∈N

πi (0) +
∑
i∈N

∫ βi

0

( ∫
V−i

ai (vi , v−i )g−i (v−i )dv−i
)
wi (vi )gi (vi )dvi

=
∑
i∈N

πi (0) +
∑
i∈N

∫
V
wi (vi )ai (v)g(v)dv

=
∑
i∈N

πi (0) +

∫
V

[∑
i∈N

wi (vi )ai (v)

]
g(v)dv .



Implication of IIR

UM
i (0) ≥ 0 or πi (0) ≤ 0. Maximizing revenue implies that optimal

mechanism must have πi (0) = 0 for all i .

max
a1,...,an

∫
V

[∑
i∈N

wi (vi )ai (vi , v−i )

]
g(v)dv

subject to ai is NDE for each i .
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Expected Virtual Value Maximization

Theorem
The allocation rule in an optimal mechanism maximizes the total
expected virtual valuation among all Bayes-Nash implementable
allocation rules.



Solving the Relaxed Problem

I Solve the optimization problem (expected virtual value
maximization) without NDE constraint.

I Can be done by point-wise maximization - choose a rule that
picks the highest virtual value agent as long as the virtual
value is non-negative.

I At every type profile v ≡ (v1, . . . , vn), we assign
I ai (v) = 0 for all i ∈ N if wi (vi ) < 0 for all i ∈ N;
I else ai (v) = 1 for some i ∈ N such that wi (vi ) ≥ wj(vj) for all

j 6= i .



Regular Distributions

Definition
A virtual valuation wi of agent i is regular if for all si , vi ∈ Ti with
si > vi , we have wi (si ) > wi (vi ).

I Standard distributions are regular.

I A sufficient condition for regularity is that the hazard rate of
the distribution is regular.

I If the distribution is regular, then the optimal solution of the
relaxed problem becomes optimal in the constrained problem.

I Without regularity, a procedure called ironing is needed to
derive optimal mechanism.



Optimal Mechanism

Theorem
Suppose the regularity holds for each agent. Consider the following
allocation rule {a∗i }i∈N . For every type profile
v ≡ (v1, . . . , vn) ∈ V ,

a∗i (v) = 0 if wi (vi ) < 0 ∀ i ∈ N,

a∗i (v) = 1 if wi (vi ) ≥ 0, wi (vi ) ≥ wj(vj) ∀ j ∈ N.

There exists payments (p1, . . . , pn) such that {ai , pi}i∈N is an
optimal mechanism.



Intepretation

I Every agent has a reserve price - if your value exceeds the
reserve price, virtual value becomes non-negative and you are
considered for the auction.

I Optimal mechanism is deterministic and DSIC.

I Payments are cut-off payments - infimum needed to report so
that virtual valuation becomes non-negative and exceeds the
second-highest virtual value.



Deterministic and DSIC Optimality

DSIC, IR

deterministic mechanisms

optimal mechanism

BIC, IIR, randomized mechanisms

Figure: Optimal mechanism is DSIC, IR, and deterministic



Symmetric Agents

I All βi are same and all Gi are same.

I Then, virtual valuation functions of all agents become the
same - denote it as w .

I For non-negative virtual valuation, agents need to have value
greater than or equal to w−1(0).

I Highest value agent is also highest virtual valuation agent.

I So, optimal mechanism is Vickrey auction with a reserve price
w−1(0).



An Example

Consider a setting with two agentss whose values are distributed
uniformly in the intervals V1 = [0, 12] (agent 1) and V2 = [0, 18]
(agent 2). Virtual valuation functions of agent 1 and agent 2 are
given as:

w1(v1) = v1 −
1− G1(v1)

g1(v1)
= v1 − (12− v1) = 2v1 − 12

w2(v2) = v2 −
1− G2(v2)

g2(v2)
= v2 − (18− v2) = 2v2 − 18.

Hence, the reserve prices for both the agents are respectively
r1 = 6 and r2 = 9.



An Example Continued

The optimal mechanism outcomes are shown for some instances in
Table 1.

(v1, v2) Allocation p1(v1, v2) p2(v1, v2)

(v1 = 4, v2 = 8) Object not sold 0 0

(v1 = 2, v2 = 12) Agent 2 0 9

(v1 = 6, v2 = 6) Agent 1 6 0

(v1 = 9, v2 = 9) Agent 1 6 0

(v1 = 8, v2 = 15) Agent 2 0 11

Table: Description of Optimal Mechanism



Inefficiency

Due to not selling the object.

Due to asymmetric agents - lower valued agent may have higher
virtual value if the distributions are not symmetric.



Budget-Balance

A central requirement in many problems is that the payments
should add up to zero:

I Bilateral trading: a buyer and a seller exchanging a good.

I Resource sharing: agents collectively sharing a unit of
resource.

I Dissolving a partnership: shareholders of a firm redistributing
their shares.



General Results

Dominant strategy incentive compatibility, efficiency, and
budget-balance are usually incompatible - Green and Laffont.

Bayesian incentive compatibility, efficiency, and budget-balance can
be achieved using d’Aspremont, Arrow, Gerard-Varet (dAGV)
mechanism - prior dependent mechanism.

The dAGV mechanism is not usually interim individually rational.

In specific settings, it is possible to design Bayesian incentive
compatible, efficient, budget-balanced, and interim individually
rational mechanisms - dissolving a partnership (Cramton, Gibbons,
Klemperer).
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Bilateral Trade

I A seller owns a good with value vs (type) and a buyer wants
to buy it with value vb (type).

I Efficiency: trade when vs ≤ vb and no trade otherwise.

I Interim IR: Expected utility of buyer is at least 0 and expected
utility of seller is at least vs .

I BB: What buyer pays, seller receives.

Theorem (Myerson-Satterthwaite)

In the bilateral trading problem, there is no Bayesian incentive
compatible, efficient, budget-balanced, and interim individually
rational mechanism.
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Closing Thoughts

I Convex analysis allows us to solve the single object optimal
auction design problem.

I In multidimensional problem, significant progress in
understanding the structure of the problem - monotonicity
characterization, revenue equivalence extends.

I Optimization in multidimensional problems remain elusive -
new approximation techniques from Computer Science (see
papers by Chawla and Hartline).

I Budget-balance is difficult to achieve with individual
rationality.


